Effect of copper ions on the degradation of thiram in aqueous solution: identification of degradation products by HPLC-MS/MS.
نویسندگان
چکیده
The aim of this work was to examine the effect of Cu(II) on the degradation of thiram (Thi) in aqueous solutions, since the literature focused on this effect is scarce and copper based fungicides can be applied together with thiram or during the same season to agricultural crops. The effect of Cu(II) on the degradation of thiram was followed by both UV-vis and HPLC-MS/MS. When thiram is dissolved in pure water its degradation occurs very slowly, being negligible during the first 7 days. However, the presence of Cu(II) has a strong influence on the thiram degradation in aqueous solutions along time. In the presence of an excess of Cu(II), a [CuThi](2+) complex is initially formed which degrades into a complex formed between the dimethyldithiocarbamate anion (DMDTC) and Cu(II) ion, [Cu(DMDTC)](+). This complex further degrades leading to other copper complexes which were identified for the first time, by MS(n). The results obtained in the present work also demonstrated that a redox reaction involving DMDTC anions and Cu(II) ions gives rise to the formation of a Thi-Cu(I) complex. Finally, some of the complexes resulting from the degradation of [CuThi](2+) are quite persistent in solution for long periods of time (>1 month).
منابع مشابه
Photodegradation of Insecticide Chlorpyrifos in Aqueous Solution under Simulated Solar Light Irradiation Conditions using Babolrood River Water
Chlorpyrifos is an organophosphate insecticide, used to control foliage and soil-borne insect pests on a variety of food and feed crops. In the natural environment, Chlorpyrifos can be degraded through several possible processes, including photodegradation, biodegradation, and hydrolysis. In the present work the photodegradation and environmental fate of Chlorpyrifos in aqueo...
متن کاملSimultaneous Photo-Oxidative Degradation of EDTA and Extro-Oxidative Recovery of Copper from Industrial Effluents
The objectives of this investigation are the studies on the effect of copper ion on photolytic degradation of ethylenediaminetertraaceticacid (EDTA), the effect of EDTA on electrolytic recovery of copper as well as the introduction of a novel combined photolytic and electrolytic cell system for simultaneous recovery of copper and the degradation of EDTA.In this experimental study, ...
متن کاملSonocatalytic degradation of p-chlorophenol by nanoscale zero-valent copper activated persulfate under US irradiation in aqueous solutions
In this study, nanoscale zero-valent copper (nZVC) as catalyst activated persulfate (PS) was used for the degradation of p-chlorophenol (p-CP) under ultrasonic (US) irradiation in aqueous solution. The effect of different operational parameters such as solution pH (3.5-10.5), PS concentration (1-7.5 mm/L), nZVC dosage (5-35 mg/L) and initial p-CP concentration (10-100 mg/L) were evaluated at di...
متن کاملPreparation and Characterization of Nano ZnFe2O4 Supported on Copper Slag and its Effects on the Degradation of p-Xylene Aqueous Solution
One of the problems in removing pollutants from water by photocatalytic methods is the separation of the catalyst from the solution. In this study, the catalyst stabilization method was used to solve this problem. Nano ZnFe2O4 supported on Copper Slag (CS) produced in this research is an environment-friendly, simple and cost-effective catalyst. ZnFe2O4</su...
متن کاملApplication of a Novel Nanocomposite for Desulfurization of a Typical Organo Sulfur Compound
In this research, zeolite-TiO2 nanocomposite was prepared for degradation of dibenzothiophene as a typical aromatic organosulfur compound of transportation fuels.The synthesized TiO2 was immobilized on the surface of clinoptilolite by Solid State Dispersion (SSD) method. The nanocomposite was then characterized by XRD, FTIR, TEM and SEM techniques. Photodegradation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 279 شماره
صفحات -
تاریخ انتشار 2014